Skip links

  • Skip to primary navigation
  • Skip to content
  • Skip to footer
Bibliothek für Data-Engineering Bibliothek für Data-Engineering
  • Vorstellung
  • Kategorie
  • Portfolio
    ZSU

    ZSU

    Habe interesse für Data-Engineering. Liebe Fußball.

    • South Korea
    • Email
    • GitHub
    • 🗂 All Posts: 313
    • Algorithm
      • BOJ (12)
      • Codeit (34)
      • LeetCode (12)
      • Programmers (10)
      • Study (9)
      Back-end
      • Django (5)
      Cloud
      • AWS (5)
      Computer Science
      • Network (7)
      • OS (1)
      Data-Engineering
      • Airflow (23)
      • Cli (5)
      • Docker (18)
      • Hadoop (3)
      • Hive (8)
      • Jenkins (1)
      • Kubernetes (12)
      • Linux (7)
      • NoSQL (5)
      • Spark (16)
      • SQL (43)
      • Web Crawling (3)
      Programming
      • Error (13)
      • Git (16)
      • Java (2)
      • Python (20)
      • Books (20)
      Settings
      • Macbook Settings (1)
      • Python Settings (1)

    Data-Engineering - Spark

    [Spark] Learning Spark(1) - Spark Jobs, Stages, Tasks 2022.04.10 SPARK
    [Spark] Spark on Yarn 2022.04.09 SPARK
    [Spark] Spark Executor 설정 2022.04.09 SPARK
    [Spark] SPARK 개념 정리 2022.04.05 SPARK
    [PySpark] Cleaning Data with PySpark(4) 2022.03.06 SPARK
    [PySpark] Cleaning Data with PySpark(3) 2022.02.27 SPARK
    [PySpark] Cleaning Data with PySpark(2) 2022.02.19 SPARK
    [PySpark] Big Data Fundamentals with PySpark(4) 2022.02.15 SPARK
    [PySpark] Cleaning Data with PySpark(1) 2022.02.15 SPARK
    [PySpark] Big Data Fundamentals with PySpark(3) 2022.02.14 SPARK
    [PySpark] Big Data Fundamentals with PySpark(2) 2022.02.13 SPARK
    [PySpark] Big Data Fundamentals with PySpark(1) 2022.02.12 SPARK
    [PySpark] Introduction to PySpark(3) 2022.02.09 SPARK
    [PySpark] Introduction to PySpark(2) 2022.02.07 SPARK
    [PySpark] Introduction to PySpark(1) 2022.02.05 SPARK
    [PySpark] DataFrame Basics 2022.01.05 SPARK
    • Follow:
    • Feed
    © 2025 ZSU. Powered by Jekyll & Minimal Mistakes.